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ON OPTIMUM INSPECTION SCHEDULESl ” ‘

|

i by
S. Patrick Koh

Abstract

This paper treats the problem of determining
the minimax inspection schedule for detecting failure
of a component or system when inspections have a
cost and cost of failure is proportional to the length
of time between failure and detection. The mini-

maxing is done with respect to all failure distribu-

tions having a given mean.

1This research forms part of a doctoral dissertation

to be submitted for approval by the Department of
Industrial Engineering and Operations Research,
Columbia University. The research was carried out

under the supervision of Professor Cyrus Derman.




ON OPTIMUM INSPECTION SCHEDULES

l. Introduction

Consider a certain component of an operating system. The
system must operate for T units of time. T may be finite (the
finite horizon case) or infinite (the infinite horizon case).
The component can fail at a random time Y. However, if it 1
fails there is a cost incurred that is proportional to the
time between failure and its detection. Failure can only be
detected if the component is inspected. However, there is a
cost for each inspection. Our interest concentrates on the
problem of determining an inspection schedule x that reconciles

the two types of cost. Whatever occurs subsequent to the

detection of a failure or to the completion of the system's
mission at time T is not considered.

In particular, if x = (xo,xl,...,xn+1), Xy= 0, Xisl = T
in the finite horizon case, or x = (XO'xl"")’ Xq= 0 in the
infinite, horizon case is a given schedule of inspection, F
is the distribution function of Y, ¢ is the cost of an inspection,

and v is the cost per unit time of an undetected component

failure, then the expected cost associated with the schedule is

; C(x,F)
é n *rel
i =5 [ {{r+l)c + v(x - £)}dF + (n+l)c(1-F(T))
| r=0 x r+l
r

, for T < ®», n < =

(¢

= 5 fxr+l {(r+l) c + vl -t) }dF (t)
= . r C v Xr+l

=0 X
r r

, fOr T = ©», n = o,
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When F is not completely known the problem is to find x

to minimize U(x) where U(x) = ;qg C(x,F), and'g is the class i
€ d

of possible distribution functions. Assuming T < «, Derman(2],
originally, considered this problem for the class t} of all
distribution functions for non-negative random variables,
allowing for the possibility that detection of a failure at

an inspection is uncertain. Explicit formula for the optimal
schedules, called minimax schedules, were obtained. Roeloffs
[5], assuming certain detection, obtained minimax schedules

for the case when ﬁ' is the class of distributions having a
known quantile. Kander & Raviv [4] assumed Roeloffs's case
with the added assumption that all distributions in ﬁ' have
increasing failure rates, Beichelt [l] generalized Derman's
results to the case that the failure costs were, rather than
being linear, an increasing function of the time between

failure and detection. Beichelt, also, considered, in the

infinite horizon case, with increasing failure costs, the

s 1 .
minimax schedule when % =\,{u consists of all non-negative
distributions F with a given mean u. In this case, he proves
that an optimal schedule has equal intervals,

We consider for the finite horizon case the problem of
Lo
determining the minimax schedule when ='¢u. In Derman (2],

the observation that (} can be reduced to fxl, the class of :

degenerate distributions (or one point distributions), is
exploited., Analagously, we employ a theorem due to Hoeffding [3],

2
that enables us to reduce (21 to Z;j , the class of all two-point

i




distributions with mean u. Results are obtained@ that permit

the numerical determination of the minimax schedule. We also
obtain Beichelt's infinite horizon schedules by the limit of

minimax schedules as T -+ «.

2., The minimax schedule where only the mean of F is known.

We are interested in the problem of determining the
minimax schedule when only the mean of F is known. For the
infinite horizon case, Beichelt [l1] showed that the minimax
schedule is a strictly periodic schedule with the equal interval

space 6, § = fuc.
vV v

We focus on the problem for the finite horizon case.
We start with this problem by considering the supremum expected

cost for a given schedule x, that is sup C(x,F). Hoeffding (3]

FCQ“
proved sup C(x,F) = sup C(x,F}). In section 2.1, we
FE[}Z Fe !U
u
show
sup {Gi(x), G..(x)}= sup {C(x,F)}
0<i<m 1] 2
-~ — FeQ
H
m+l<j<n
where X < u, Xoel >y,
Gr(x) = (r+l)C + v(xr+1-xr)
, r=0,1,2,...,n, x0=0, X411 © T
and X, = | u - xi
G,.(X) = G,(X) md—— + G,(X) ——.
1j i xj X4 3 kj X;
-3-
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In section 2.2., we prove a key theorem, which gives a
necessary condition of the minimax schedule, that is

(2.1) G, (x) = G (x)

X - X =12
r+l r

r=0,1,2,...,n for some Z > 0. We call the schedule satisfying
(2.1) a schedule with equal average increment (SEAI). The

supremum expected cost of a SEAI has a simple form, Go(x) + Zy.

In section 2.3., we convert this problem to a problem of
determining the minimal point of a continuous function with a
single variable. Under some certain conditions, the function
is piecewise convex.

In section 2.4., we show that the minimax schedule for
the infinite horizon case is the limit of the minimax schedule
as T + =,

In section 2.5,, when T < =, an algorithm for computing

minimax schedule is given.

2.1, Supremum expected cost of an inspection schedule.

Consider a certain component of an operating system.
The component can fail at a random time Y; occasional inspection
is necessary to determine when it does fail. The cost of a
failure, vt, where t is the time between the failure and its
inspection, and v is the cost per unit of t, can be reduced
by frequent inspection. However, there is a cost ¢ for each
inspection, so the number of inspections must be kept small.
The best compromise between these two conflicting requirement
in the sense of minimizing expected total costs is called the

optimum inspection schedule. 1In a finite horizon problem we

-4~
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assume the system will stop operating when a stipulated time
T is reached or when a failed component is detected.

In this section, we will derive a formula for supremum
expected total cost for any inspection schedule assuming the
mean of.Y is given.

Definitions:

u is the mean of Y;

(, is the class of all distribution functions
for nonnegative random variables.

J
(}” is the subset of ; that have expected lifetime yu;

W !

&~i is the subset of (u that have exactly two points of
increase;
X = (xo’xl""’ X xn+l) denotes an inspection schedule

{(short: schedule), where x0=0, X = T, and Xy < X

n+l i+l’
i=0,1,2,...,n;
m is the index of an inspection in x such that X < e

Xm+1 2 Wi
C(x,F) is the expected total cost of x if F is the c.d.f.

of Y;

The supremum expected cost of x is u(x) = su%'c(x,F).
Fe

If YqrYs denotes two increasing points of the c.d.f.,
F(yl,yz), of Y, which is a member of Qﬁ then the probability

function of Y is

YZ‘IJ

P(Y =y,) = ¥, =¥,
Wy

PO = yy) = o Yi
-5-




» Where 0 < Yy <u o< Y, < .

Proposition 2.1. 1If x is a given schedule with X4l S T

—

R . o2 .
and F(yl,yz) is a c.d.f. 1n\iu with p < Yy < Xnel then
C(x,F(yl,yz)) < u(x).
Proof.
C(X,F(yl,yz))
. Y2-U | ¥ Yl
= [(i+l1l) C + V(xi+l - }l)]§_:§ + [(m+l)C + V(xm+l- y2)]§—:—§_
2 71 2 1
, 1f x. < Y, = X4 and u < Yy < Xpel®
By taking partial derivative with respect to Yyr We have
83 C(x,F(yl,yz))
Y
SRS! .
which shows that C(x,F(yl,yz)) is a strictly decreasing
function on yz; hence, we have
C(X.F(yl,yz))
S Cx,Flyy,ut))
= (m+tl) C + V (xm+l - u)
< (m+l) C + V (xm+l - xm)
= lim C(x,F(xm+, yz))
yz-mo
< Ux) Q.E.D.

Proposition 2.2. U(x) = sup C(x,F)

ngﬁ




i,

" * 0 [}
Proof. Let(:u = {Fequ| F is a step functionl} and a(F,G) =

sup|F(t) - G(t)|; theorem 2.2. in Hoeffding [3] states

X

(2.1.1.) sup C(x,F) = sup C(x,F) = sup C(x,F)

*
Feai FEru

4
FEI*u

if (A) C(x,F) is a continous

sense of d(.,.), and (B) for

such that lim Fn = F in the sense of d(.,.).

n-—>w

function on@u for x fixed, in the

*
any FeGu_, there is a sequence {Fn}gcu

The satisfaction of A and B are easily verified.
pefinitions:

flj(yl,yz)

y2 -y y - yl
=95 (Yl) yZ.—Tyl + 93 (Yz) ﬁ

, where x < u < x 1 <i<m, mil < < n+l,

Yy € (Xo%5.9), ¥y € (xj.xj+ll, and

gr(y) = (r+l)C + V(xr+l -y) ify e (x, xr+l] and
r=20,1,...,n
= (n+l)C if y > T and r = n+l ;

Gij(x) = fij(xi +, xj+) :

Gr(x) = gr(xr+).

Theorem 2.1. For any schedule X,

u(x) = sup [Gij(x),Gi(x)}.
Og}gp

m+l<j<n

~7-

w~ : R -
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Proof. The partial derivatives with respect to Yq and Yo

on fij(yl'yz) respectively are

ayl
Yo ~H . o
(2.1.3) =(§-—— 2[(1-3)C + v(xi+l-xj+l)]< 0, if j < n, 1
Y ~H . e
(2.1.4) =(§E:§i)2 [(i-n) C + V(%41 — ¥y) 1< 0, if J = n+l.

\

ayz
MYy . o
(2.1.5) —(yz:yl)z [(i-3)C + V(xi+l - xj+l)]< 0, if j < n,
SR NP o
(2.1.6) —(Y2_yl) ((i-n)C + V(x, ., - y;)], if j = n+l,

If the value of (2.1.6) is negative then
fin+l(yl'y2) < Gin(x), together with (2.1.1), proposition 2.1.,
(2.1.3), (2.1.4), (2.1.5), we have
U(x) = sup {G,.(x)}
O<i<m 1J
m+1<j<n

If the value of (2.1.6) is nonnegative then, we have

£ Vo2 lim £ Veyy) =95 (yy) G (x)

i ne1{¥10¥)
y2+oo

which implies

U(x) = sup {G,.(x), G.(x)}
Oiigm 1] 1

m+l<j<n
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2.2. The minimax schedule is a schedule with equally average

increments

Definitions:

i denotes the index of an inspection of a schedule x such
that 0 < i < m;

j denotes the index of an inspection of a schedule x such

that m+l < j < n.

Proposition 2.3. x is a given schedule. If j # m+l, or
j=m+1 but i#m, then

Gi.(x) is an increasing function on x X and decreasing

j i+l Tj+1

function on X;,xj
A

If 3 = m+l and i=m, then

Gm(m+l)(x) is a decreasing function on X

Proof.

If j # m+l, or j = m+l but i¥ m then

aGii xj-u

% S(xaox,) 2 LE-3IC - Vg ox, ) <0
i j i

a8G. . X. = U

_—131 =V—l-——- > 0

Xi+1 X5 7%

3G H - X,

5 R TR R - _
Sigl ’(xj-xi)z HE=3)C = Vixy ) = X540 <0

9G. . u - xi

LR XyTXg

If j = m+l and i = m then




iy R

BGm(m+l)

xm
X - u
- m+1 oo _
= (i____:—§-)2 {-C - Vix o= x )} <0
m+1l m

Q.E.D,

Proposition 2.4. For any schedule x, Gij(x) < Gi(x) if and

only if Gj(x) < Gi(x).
GJ (x)-Gi (X)

Proof. Gij(x) = Gi(x) + — (y - xi)
j i
< Gi(x)

<> Gj (x) < Gi(x), since u-x; > 0

Q.E.D.

Proposition 2.5. If x is the minimax schedule and {j} n > j > m+l

is nonempty set, then u(x) = sup {Gi.(x)}.
i,j
Proof. If u(x) = G, (x) for some i,<m, and G, (x)
> Gy j(x) for all j € {j} n > j > m+l, then, by nonemptiness
0
of {j} n > j > m+l and proposition 2.4., we have Gm+1(x) < Gy (x).

0
Hence, we can find a sufficiently small ¢ > 0 and the corresponding

schedule
x€ = (0 X.= £ X -, X
reccr HiT2Tm=1+D) " “m+l” 7' TmH2,..., xn) such
that
€
(2.2.2) Gm+l(x) < Gm+l(x ) < Gy {x).
0
£ £ . € _
Since X{41 = *§ < Xiyy T Xy i=0,1,..., m and xj+l

-10-
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j = m+2,...,n, we also have

(2.2.3) G.(x%) < G.(x) < G..(x) , i=0,1,...,m and
1 1l —10

(2.2.4) G.(x%) = G.(x) <G, (x), j = m+2,...,n.
3 3 i,

Case 1. x > U

If ¢ is sufficiently small such that x - € > u, then,

m+l
by (2.2.2), (2.2.3), (2.2.4), proposition 2.4. and theorem

2.1, we have

(2.2.5) U(x") = iu?{Gij(xC), Gi(xc)}

< Gio(x) = U(x).

Case 2. xm+l =

In this case, X - € <y, (2.2.5.) becomes

m+1

U(x%) = sup {Gij(xe), Gi(xc)}
O0<i<m+l

m+2<j<n

= U(x).

Both case 1 and case 2 lead to a contradiction; thus,

U(x) = sup {G,.(x)}.
i,y Y
Q.E.D.

Definitions:

If x is a schedule, Gj(x) - Gi(x) is called an increment

G-(X) - Gi(X) .
with respect to (i,j) and Ax(j,1i) = i o is called
3 i




L S

Aty S Satt Mtgobhon - A e e .
il Mok gk ANE e NIV G TN Y . o A1 * i v s il N

an average increment with respect to (i,3j). If x is a
schedule such that for some 2 Ax(r+l,r) = 2, r=0,1,...,n

then x is called a schedule with equal average increment (SEAI).

Proposition 2.6. If for a schedule x, there exists i0 and jo

such that
{2.2.6) Gi m+l(x) = ... = Gi n(x) and |
0 0 ‘
(2.2.7) G,. (x) = ... = G_. (x) %
039 Mg ;

then x is a SEAI.

Proof. For convenience, let Gij = Gij(x), Gr = Gr(x),

A(i,3) = Ax(i,j). Since

@D
i

[}

G. - A(j,1 X.-
3 (3,1) « 3 u)
for any schedule x and any existing pair (i,j) we have,
by (2.2.6;,
8(3,i5) = A(3+1, ij)
G. . G, G, . - .
_ 15 - i, 103+1 1,

T W - x. T U - X, =0

1o 1o

’ j=m+1'ooo’ n,

1f j0 # m+l or Xpel > Mo then, by (2.2.7) and the same

reason as above, we have

(2.2.8) A(jo,i) - A(jo, i+l) =0 , i=0,1,...,m-1, If j0=m+1

and X4l = ¥ then Gim+1 = Gm+1' i=0,...,m, which implies
Gi = Gpyy ? thus, (2.2.8) still holds.

-12-~
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In other words, the following holds:
(2.2.9) A(m+l, iy) = ...= A(n,iy) and
(2.2.10) 4(3,,0) = ... = A(ig.m).
Since (2.2.9) and (2.2.10) have the same term A(3g.1ip)

we have
(2.2.11) A(jo,O) = A(jo,l) = ... = A(m+1,io) =,.. = A(n,io).

Setting the expression of (2.2.11) equal to Z, by the

definition of A(.,.) and A(jo,i) = A(jo,i+1)=z, we have

Giv1 ~ 6 = Gjo =G + Gy - Gjo
= (xjo - xi)z + (xi+1 - xjo) z

[

(xi+l - xi)Z.

This implies

z for i=0,1,...,m=1; similarly, by

(2.2.12.a) A(i+l,i)

72 we have

(2.2.12.b) A(j+1,3) Z for j=m+l,...,n.
What remains to be shown is that the value of A(m+l,m)

is also Z. This follows from

G. - G,
3 i
7 = ~ 0 0
Ja = X,
0 10
= . - o + G- - G- + ..‘+ G -G
(Gy =Gy _)*(6y ) = G5 ) (Gpeq=Gp)
X.
Jo'xio

=13~
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Z(xjo- xjo-l * xjo-—l - xjo-z vee T Xy 4Gy mGy)
X, - X
Jo 1o
Z(xjo - xm+l) + (Gm+l - Gm) + Z(xm-xié
= X. - X
Jo 1o
G - G - Z(x - xX_)
= 7 4 m+l m m+l m
X. =X
Jo Yo

Cancelling Z from both sides of above equation we have

Cre1 ~ Op = 2(Xpyy = %)

which implies A(m+l,m) = Z, Together with (2.2.12.,a) and

(2.2.12.b) the proposition is proved.

Lemma 2.1. Suppose a,b,A,B are real numbers and B + b > 0,

B > 0; we have

a) b>0; A+ a _AIif and only if a _ A
B+ b B b B*
b) b<0; A+a _Aif and only if a | A.
B+ Db B B

-1 4.-
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5+b < a8 < b
<> a < bA
B
a A
S g<g (by b>0)
b) A+ a A . bA
B+b B a<§
Na , A
<—>E>B (by b < 0)

Q.E.D.

Definitions:

P.(x) = sup {G,.(x)}
J Oiigm 1

¢.(x) = sup {G,.(x)}.
Y m#l<y<n M

Theorem 2.2. A minimax schedule x is a SEAI with some non-
negative increment Z.
Proof. We prove the theorem under the following two cases:

Case 1: If {3} = ¢ then x is a SEAI with average

n>j>m+l
increment 0.

Case 2: If {j} o1 ¥ ¢ then x is a SEAI with some

n>j
nonnegative average increment 2.

Case 1. By theorem 2.1. and {j} = ¢, we have

n>j>m+l
U(x) = sup {G,(x)}.
0<i<n *

Suppose i_ is the largest index such that U(x) = G; (x)

1x

X
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and suppose ix # n. Because Gi(x) is a continuous function

in x, . i i in x; e i j .
i’ Xi+1’ and increasing 1417 decreasing in Xy together

with the assumption above, we can find a sufficiently small

€ > 0 and a schedule

£

X = (Xq,Xn,eees X: ,X. = EreeerX )
1772 ' lx’ 141 n
such that
G. (x%) < G, (x) = U(x) still holds, and,
lx+l X
(2.2.13)
e —
Gi(x Yy < Ci (x) = U(x).
X
Thus U(xe) < U(x) ; however x is minimax so U(xe) = U(x)

i < i_.
and ie i,

Repeating the above procedure at most ix + 1 times,

we reach a schedule xo such that U(xo) = U(x) and ix0 = 0.

Again, let n > 0 be small enough with the corresponding schedule

*
x = (0, Xy=Ny x2,...,xn)
* 0 * 0
such that Gl(x ) < Go(x } and Go(x ) < Go(x ) then we have

U(x*) < U(xo) = U(x), a contradiction. Thus, ix=n.

If there is a iO such that G. (x) < G_(x) = U(x)
i, n

then we can find a sufficiently small £ > 0 along with

a schedule

(xl,xz,..., xio,xio+l + e,xio+2,...,xn)

such that G, (x%) < u(x) still holds. Since
0

£
G, (x") < G, (x)
10+1 10+l

and Gr(xe) = G (x), r=0,1,...,i0-1,i +2,...,n,
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x® is also a minimax schedule. By induction, we can find a
* * *
minimax schedule x such that Gn(x ) < u{x ) which is a con-

tradiction. Hence, Gi(x) = u({x) for all i.

Case 2. {j} 1 # ¢

n>j>m+
Case 2. can be proved by three steps:
Step 1. To show ¢0(x) = e ¢m(x)

and wm+1(x)= ees = wn(x).

Step 2. To show there exists i0 and j0 such

that Gi m+l(x) = ... = Gi n(x) and GO.(X)=°"=Gm. (x) .
0 0 Jo Jg

Step 3. To show Z is nonnegative.

Step 1. By proposition 2.5, U(X) = sup {Gij(x)}
i,j

and U(x) = sup {y.(x)} follows. By proposition 2.3.
m+l<j<n

and the definition of wj(x), we know wj(x) is continuous
and decreasing on xj for j = m+2,...,n and is continuous

and increasing on x,

j+1 for j=m+l,..., n-1l. If we treat

xm+1

show

as a fixed initial point then the method in case 1 can

Vr1 (X = oo = ¥ (X) = ulx).
; analogously, if we treat X4y 2S @ fixed terminal point
we have

0p(X) = o0 = 0 (x) = u(x).

% Step 2. Suppose ¥py) (X) = Gy pyy (X) and Gy pyp(x)
<

G, (x).
10m+1

-17-




Since c +2(x)-G. (x)
1o
iom+2 0 10+1 i, xm+2 xio i,
G (x)-G.
Gi m+l(x) = (1 +1)C + V(x - xX. ) + e 'o (U‘Xi ).
0 o i,+1 i X - X, 0
0 0 m+1 ig
we have
G. (x) < G, (x)
10m+2 10m+1

Gm+2(x) - Gio(x) G (x) - GiO(X)
<= <

X - X, - X,
m+2 i xm+l X

Since Xo+2 =~ Fmel 0 by lemma 2(a), the above inequality

is equivalent to

(2.2.14) G (x) - G (x)

m 2 m+1 (x) - Gy (x)

Qo
_7m+l

X - X

m+2 m+l Xm+l ~ Xic

At the same time, by the definition of y (x), we have

m+l
Gim+r (X) 2 Gi0m+l(x) for all i, and since
G (x) - G, (x)
= m+1 i (x - 1)
Gimel (¥) = Gy (%)= — — el
m+1l i
G .1(x) = G, (x)
= m+l i
6y 1 (%) = Gy (30 L e ),
X+l i m+
0
we have
( - 1, 3 - ,
G X)) = Gy () Gpyy () 6; ()
(2.2.15) - > i}
Xm+bl =~ *§ X+l ~ %




Gm+2(X) B Gm+1(X)

> - (by 2.2.14).
me2 T ¥mel
Thus,
G {x) -G, (x)
m+2 i
G, (x) = G, (x) + - (u=-x,)
im+2 i xm+2 xi i
-G (x)+[Gm+2(x)-Gm+l (x) ]+[Gm+l(x)-Gi(x) ] (1=x.)
i (xm+2 - xm+1) + (xm+l - xi) i
From (2.2.15), Lemma 2.1(a), and T 0
we have
G (x) - G, (x)
+1 1
G, (x) < G, (x)+ = — (n-x,)
im+2 i xm+l xi i
= Gim+l(x); hence,
Gim+2(x) < Gim+l(x) < Gi0m+l(x) = u(x) for all i
> ¢m+2(x) < Gi0m+l(X) = wm+l(x), a contradiction with
Step 1. Thus, Giom+2(X) = Giom+1(X)' By induction we have
(2.2.16) G, (x) = G, (x) = ... =G, _(x).
1om+1 10m+2 10n
By Lemma 2.1(b) and
¢0(x) = ¢l(x) = ... = ¢m(x) = u(x), we can also prove

that there is a j0 such that (2.2.17) GOj (x) = Gljo(x)=...=ij0(X).
0

Equations (2.2.16), (2.2.17), and proposition 2.6. implies
X is a SEAI.

Step. 3. If 2 < 0, by x is a SEAI, we then have




G.(x) - G, (x)
G, (x) + %j' % = (u-x)

D
%
]

ij

Gi(x) + Z(u—xi)

A

Gi(x) for all (i,3),

which contradicts u(x) = sup{Gij(x)}.
i,]

Thus, the theorem has been proved.
Theorem 2.3, If x is a SEAI with non-negative average increment

Z then Go(x) + Zu=u(x).

Prodf: If Z2=0, by the definition of SEAI, we have
Go(x)=Gl(x)= ...=Gn(x) which implies
Gij(x)=Gi(x)=Gj(x)=Go(x) for all (i,j); thus by

theorem 2.1.,

U(x)

u

sup{G, . (x), G, (x)} = G, (x)
i,3 ij i 0

= Go(x) + Zu.
I1£ Z > 0, by definition of SEAI, we have
Go(x) < Gl(x) < ee. < Gn(x) which implies Gij(x) > Gi(x)

for all (i,j); thus, by theorem 2.1, we have

#

u(x) = sup{Gij(x), Gi(x)} SuP{Gij(x)}'

i,) i,j
Because
Gij(X) = Gi(X) + A(j,l)(u-xi)
= Gj(x) - A(j,i)(xj-u) for all (i,3):
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and
G.(x) - G, (x)

J
xj-xi

(2.2.18) 4A(j,1)

Gj(x)-Gj_l(x)+?j_l(x)-...+Gi+1(x)-Gi(x)

8. + &, e .
j-1 6]_2 + + 61

208, ) * 855 *ee-t8y]

a 1 "2 i .4
- - ’
Gj-l + Gj—z +...+6i
the following hold ”
(2.2.19) Gim+l(x) = Gim+2(x) = eee = Gin(x) for all i
(2.2.20) Goj(x) = Glj(x) = ..., = ij(x) for all j.

Equation (2.2.19) and (2.2.20) imply all Gi j(x)'s are
[ 4

equal. This is evident by the following diagram.

Go mt1 ) = Gy me2

(x) = Gl m+2(x) = ,,. = Gln(x)

(X) = o0 = GOn(x)

Gl n+l

Gm m+l(x) = Gm m+2(x) = ... Gmn(x)

, where the row equalities follow by (2.2.19) and the
column equalities follow by (2.2.20).
By (2.2,18), we have

U(X)=?“P{Gij(x)}= Gy (%) = G (x) + A(n,0)u
i,

= Go(x) + 2y

Q.E.D.




2.3. The properties of objective functions.
Let
- bTv = (n+l)c c
g(b,n) = c+ —1 tpt bvy

(1+b) -1

* *
Proposition 2.7. If b > 0, n is a positive integer, and

* *
g(b ,n ) = min g(b,n), where

(b,n)eA
+
A ={(b,n)|beR , neW, and

(bn-ﬂbz - 1) (1+b0)" + 1 < 0}

c
then
* <
s bT - (n + 1)v + S
- * * !
0 (bl 1 By
5 = (1+b*)r 5 (1+b )r -1 c
r 0 b* v/
*
for r=0,1,...,n , and 6r=xr+l - X, define the minimax
schedule,

%*
Proof. By theorem 2.2. and 2.3., the minimax schedule, x ,

minimizes

Go(x) + Zy
where

Gr+l(x) - Gr(x) = ZGr
and

n

Z ‘S =T 6 > 0' Z > 0' r" 0'1'-0- no

;=0 T r ’
Equivalently,
(2.3.1) C + v60 + Zu

is minimized over 50 with constraints

-22-
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(2.3.2) C + v6r+l = vGr + ZGr = (v+2) dr

(2.3.3) n
. L Gr >0, 2 >0, xr=0,1,...,n
r=0
holding.
However (2.3.2) and (2.3.3) >
= Zys -S
: (2.3.4) 6r+l = (1+v)<5r <
-}
4 and
i n
z 6r=T Gr >0, 2 >0, r=0,1,...,n.
r=0
Let b = %, then from (2.3.4) we have
2 r (1+b) *-1 ¢
(‘-03-5) 6r=(1+b) 60 -""_b——'— '\7 ’ r=0,1,...,1’1
n
v §=T, 6_ >0, b>0
r
r=0
which imolies
n n r
8y : (1+p) % - ¢ B & o,
- v
r=0 r=0
§ >0, b >0,
r
k- Rearranging,
c n r .~ _ (ntl)c )
(89 - 65 = (I4b) " =T = g5 + O, > 0, b >0,
r=0
and solving for 60 we have
. C _ (n+l)c 1
(2.3.6) 60 =gv * (T “Bv )n ,
T {(1+b)
r=0
c (n+l)c b
= =~ + (T - )
bv bv (14b) "-1
-23_
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c
bT - (n+l)=
v

= +

C
By’ Gr >0, b >0,

(1+b) "t - 1

From (2.3.4) in order for 6r+l > 0, we have

2 c . (o] 2
(L+3) 6. -5 >0; i.e. 6, >/ (1+5) > O.

Thus, if 6 > 0 then 60, 8§ s-v-r 8, > 0. From (2.3.5)

and (2.3.6) we get

n
_ n _ {1+b) -1 ¢ |
Sn = (1+b) 60 5 7 hence,
5 >0
n
’ n 1+b)" -1 ¢
& )" sy > P 2
(1+p)" -1 ¢
é% §. > Am—1 - =
0 p(+p)? v
o bT - (n+l)% + S s (1+b)" - 1 c
n+l bv ] n v
(1+b) -1 b (1+b)
* O (nb - gﬁ b2 - 1) (1+b)™ + 1 < 0.

Thus, we get

c + v6r+1 = (v + Z)(Sr

n
r §=1T7,6_ >0,2>0, r=0,1,...,n

(i.e. (2.3.2) and (2.3.3) holds)
& .

! s - BT = (n+1)¥
(L+b) o1

; 0 +

c
bv '/

(nb - gl b%-1) (1+b)™ + 1 < 0,

=24~




C + vé
r

+l = (V+Z)6r’ r=0,l'o-o'n-lo

However,

+
c V60 + 2y,

C
= c + v(RE= (Qil)v + g;’+ Zu
(1+b) P+ 1 v
= g(b,n)

; thus, problem (2.3.1), (2.3.2),(2.3.3) is equivalent
to

min g(b,n); subject to
b,n

(nb - 3% b2 + 1) (4b) + 1 <0

and the associated schedule is

= - £ = -
(2.307) 6r+l - (l+b)(sr v r l'oo-' n l'
<
bT - (n+l)v c
6 = + ey ® Q.E-Do
0 (™l .y B

Proposition 2.8. If n(b) = max{n|(n,b)eA} then

min+ g(b,n(b)) = min g(b,n).
beR (b,n)eA

Proof. On taking difference,

g(b,n) - g(b,n=-1)

= ¢ + (1+b)"(ncb ~ Tvb2-c)
[(14b)"+1

- 1] [(1+p)" = 1]
Thus, g(b,n) - g(b,n-1) < 0 and n'< n implies

g(b,n') - g(b,n'-1) < 0; also,

g(b,n) - g(b,n=-1) > 0 and n'> n implies

ALl e s o




g(b,n') - g(n'-1) > 0
from which the provosition follows,
Since (b,n) € A if and only if

(nb _gx b% - 1) (1+b)™ + 1 < 0, we define

£(b) = (nb - =X b% - 1) (1+b)™ + 1. We then have

n(b) = max{nlfn(b) < 0},

nely
Let n, = lim n(b).
0 pao?
‘4 2Ty
Proposition 2.9. n, > max {n|n(n+l) < ==},

nell

Proof. Expanding (1+b)n we have

£ (b) = RS2 TV 52 4 o p?) < o.
Then
2
+ .
n(n+l) I% O(bz), as b»+0 and thus
b
n(n+1) i ,2_'2.\{0 Q.E.Du
The equality in orovosition 2.9. holds when 2Tv jis not
c
an integer, and max {n|n(n+l)< Z%!} is the optimal number of

nelf
inspections in Derman's schedule, the minimax inspection
schedule when nothing is assumed about the distribution of Y.
Proposition 2.10. 1lim £ (b) = n(n+l) = 32!.
+ . n c
b 0
Proof. Follows from the proof of proposition 2.9.

0.E.D.

From the definition of n, and proposition 2.10., we have
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f (0+) > 0; thus we can define b as follows:
Ro+1 0+1
Definition: b = sup{b|f_(b) < O, fn (b) > 0}.
041 b>0 %o 041 -
Proposition 2.11. b is the unique zero of fn (*)
0+1 0+l
on (0,«), and n(b) = n, for 0<bibn .
0+1
Proof.
(2.3.8) £, (b) = b(1+b)"0[(n +1) (ny+2) - 2Z¥ - (n +3) T,
Mo+t ¢ 0 0 c
L}
By (2.3.8) we have fn0+l + b and fno+l(w)=—w which implies
f (+) has an unique zero on (0,~) (see Fig 1).
To+1 .
Let fn (x) = 0, we
0+1
have f (b) .
ni#l Fig.l.
(2.3.9) = (b) >0 if 0 <b < x “;%-—éb
N0+l
(2.3.10) £ (b) <0 if b > x.
0+1
Also, by proposition 2,9., we have
' _ n _ 2Tv Tv.
(2.3.11) fn b) = b(1l+b) O[no(n0+l) = —(n0+2)Erb] <0

0
which implies »
(2.3.12) £ (b) < 0, if 0<bix.

0

The definition of n(b), b '
"o+1
(2.3.12) prove the proposition.

(2.3.9),(2.3.10),

If £ (b =0, fk+l(x) < 0 for x > bk+1' and

k+1 P41’

fk+1(x) > 0 for 0<x<bk+1, then we have

(b + ) = {(k+1)b + (k+l)e + b

fx+2(Praa K+1 k+1 *

k+1

+€)2 - 1} x (L#b, ,, + ©) L (4b,,; + €) + 1. As €20

1

27 =
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(2.3.13) f

(bk+1+) >0

k+2
holds; also,

f (b + €)<0 VvV €>0.

k+1'"k+l

We can inductively define bk+l' k=n0+l,..., as follows:

Definition: b = sup {b|f (b) <0, (b)> 0}.

K+2 k+1 fx+2

Proposition 2.12., The unique zeros b yeee OF fn ree ey
No+1 0+1
indicate

nib)=k if bk <b < bk+l where k=n0,n0+l,.. and bn =0.

0
_ k+1 2Tv _ Tv
Proof. £+2(b) = b(1l+b) [(k+2)(k+3)-—3* (k+4)—3b]:
fk+2(m)= -o, and (2.3.13) implies fk+2(-) has a unigue zero
on (bk+1,w). Denote the zero by x ; then we have

fr4p(P)20 if b, ,<bzx,

k+1
fk+2(b)<0 if b>x.
Also, from

L}
fk+l(b) < 0 for b > bk+l

together with

fr+1 Pe1) = O
we have
fk+l(b) < 0' bk+1 < b i X. Q.E.DQ

Proposition 2.13. g(b,n{(b)) is a continous function.

-28=
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Proof.

lim g{(b,n(b)) - 1lim g(b,n(b))
+
b b, g b+b,\

= g(bk+l'k+l) - g(bk+l'k)

- ka+l(bk+1)

[(L+by )T - 1) (b * - 1

k+1 0.E.D

Pronosition 2.14. For a given b>0, let k=n(b) and

(1+b) X*1 - 1
PP o

s (b) ) > 6 then g(b,k)

, 1f Z% s(bk+l

is a convex function on (bk'bk+1]‘

Proof. By taking first and second derivatives on g(b,k)
with resvect to b, we have

(2.3.14) 4 _g(b,k)
db

~Tv k Tv ,k+1,2
—3{1 +(1+b) " {kb - = (7i§) - 1}
= { < - Loy
[(1+b) Kt - 1p2 b2
and
(2.3.15) a2
2315 & q,k)
ab
= (1+0) 1240 ¥* L 6 (b, %) - (KP+3K+1) (14b) -k (k1) (14
B {(+p) KL - y3
Kk+1
—Ez)}
< + 23} c
b 2
(k+1)
, where ¢ (b,k) = k(k=1)b+2 - (k=2) Eg .
(o]
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Let x = bk+1' by definition, we have

1+ (100 ke x - T x

_ Tv s (x)
=-’l’l'l-].--—C}("'—---—--x.

. T
For convenience, let a =Ez and s = s(x), then

2.2 2

-x3¢(x,k) = (sa-2)ax4 - (3s+2)ax3+2as x"=3s8"x

25 2

+53 = a{(sa-2)x2 - (3S+2)X+T§s }x2

2

+sz{%g ax“-3x+sl.

The discriminant of the auadratic polynomial in the first

brace of the above formulation is

F
2 25 200 100
(2.3.16) (3s+2) - 4(53"2)1—6- < 25 + ? - sa —IB'
R _ , and in the second brace is
28
(2.3.17) 9-16 s.

The condition as > 6 makes both (2.3.16) and (2.3.17)

negative; hence, we have ¢(x,k) < 0. Since ¢(.,k)*Db

k —, g(b,k)> 0 for

T ' for b, < b < b = x, we then have a2
n+l
db?

b e(bk,bk+1].

Proposition 2,15, gﬁ gb,n(b)) > 0 if b > /T

v’

Proof. b >

gl°

(2.3.18) - Ly + W s
b

n+1l
(—EE)
C

Also, fn+1
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n+l )n+l {(n+l)2 _Tv (n+1)2 - 1)
Tv g! c Tv

— ——

C C C

= 1 + (1+

= n+l. n+l
1 + (1+—?§) (-1) < 0

C

which implies n+l
Tv bn+l > b

(o}

; thus, 1+(1+b)"(nb - 3% E%%)Z

c

- 1}

Tv, 2

3 - 1}

< 1+(1+b)™{nb -

= fn(b) < 0, where n=n(b).
Together with (2.3.18) and (2.3.14), we have

g(b,n(b)) > 0.

Qul ou
&

Q.E.D.

Proposition 2.16. gx s (b) +

(l+bn+1)n+l -1
Proof. Recall that s(b) = s il where
(l+bn+l)

n = n(b). By proposition 2.12., we have n(b)+b and

b+l e 0.E.D.

As a summary of proposition 2.13, 2.14, 2.15 and 2.16,

we have the following theorem.

Theorem 2.4. If Z% s(0+) > 6, then the objective function
g(b,n(b)) is continous and piecewise convex, and the optimal

® ———
b 4is in (0 c ).
r/;a_




Proof. By proposition 2.13.,2.14.,2.15., 2.16..
0.E.D.

2.4. The asymtotic minimax schedule as T»w,

Definitions: XT denotes a schedule on [0,T].

For a given schedule x, n(x) is the total number of inspections
assigned, Gi(x) is the length between ith and i+l th inspections,
and u({x) is the corresronding supremum expected cost. If x

is a SEAI then 2(x) is its average increment level. If

_ T . . . . s
Gi(x)— STOFT for all i, then x is called a strictly periodic

schedule, If s is a real number, [s] denotes the largest

integer which is small then s,

Proposition 2.17. If x 1is a strictly periodic schedule

then x is a SEAIT.

(i+2)c + Véi+l

6i(x)

(x)=(i+l)c - vdi(x)

Proof. A(i+l,i)=

=.c{n(x)+1)
—_—g - 0.E.D.

Provosition 2.18. If {Tj} is a time sequence and Tj*w

* * .
as j»«, then n(xT )+ as j+o, where Xp is the minimax

J h|
schedule on [0,Tj].

Proof. Suppose xg_ is Derman's schedule on [O,Tj]
J

then Z(xg ) = 0, by proposition 2.12., we have
3

0 *
n(xn ) < nixq ).
] ]




A it

But lim n(xoT ) = », The provosition follows.
3
*
Theorem 2.5, 1If X is the minimax schedule on [0,T] then

there exists a strictly periodic schedule xg for each T such

that

*
Proof. By theorem 2.3,, Xm is a SEAI and

* * *
(2.4.1) u(xT) = c + VGO(xT) + Z(xT)u.

Let {Tj} be any time sequence such that Ti»m as j-»,

and xg be a strictly neriodic schedule such that

j
l+n(xg.) =: T. .
] /E
v ]
=
: NN Y-
. ; v
u(xT ) = c + v —— &+ b - = .
j T. T,
) 2 j
v
v
Since r m
iy
/uc
v 1 * 0
lim = ,— and u(x, ) < ulx_. ),
s oo ‘U T. - T
e T /S5 j i
we obtain
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*
(2.4.2) lim u(x, ) < c + :yﬁE + 1 E: < o,

i

v /uc
v

(2.4.1) and (2.4.2) imply that limsup & (x, )

j+m ]

j >0

*
and limsuo z(xT ) are both finite.
j*m ]

*
Suppose 0 is a limit point of {Z(xT )}

B
*
and lim Z(x;, ) = 0, where {Tj } is a subsequence of {Tj}.
jk—wo ]k k
By proposition 2.7. and b = %, we have

*

lim u(xTj )
* *
TZ(ij ) (n(xTj ) + 1) ¢
= lim ¢ + k k + X<

3y > . Z(ij )

(1+z(x, N &p )+ 1y k

T. 3
I k
*
+ Z(x Yu
Ik
2 2 n+l ]
= 1lim lim ¢ + 2= (n+1;CZ+I voltixy) = 1), Zu.
n-o 20 201+ " - 1)
Applying L'Hospital's rule twice, we obtain
: 2 2z n+l

lim TZ"-(n+l)cZ + vc[(1l+V) =1 _Tv + RS
240 Z. n+l n+l Z

Z[(l+;) - 1]

which implies




f
;
:
s
E
|

lim u(x* Yy = lim iﬂi&l&- + Ve
e Tjk no 2 n+l
Ik
, a contradiction with (2,.4.2). Thus,
(2.4.3)  lim z(xy ) = 2% > o.
}. > ]
I k
By proposition 2.7. we have
- * *
Z(xpy )T - (n(x; ) + ¢
* Jk v Jk v c
(2.4.4) SO(XT ) = n ~% + x .
Ix (142 (xy, g )+ 1, Z{xg )
I Tk Ik
v

Because (2.4.3) holds it can be seen that the first term
of the right-hand side of (2.3.3) tends to zero when jk+w;

thus, lim & (x.

0
jk-pm ) k
. c 0 c .
Since ¢ + V=5 + w2 > c + v/uc + u = is always true
2 v /uc
/v

for Z0 > 0, we have

jk»)u) Jk jk
= c+v£6-+uzo
Z
C
2 c+v/UcC + U 0=,
/¥ e
/ v
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* *
lim u(xT ) =¢ +v/uc + Uy - = lim u(xT )

c
-'|k~>oo jk Yy v /%E -_"-mo j

2.5. Optimization by an algorithh.

The objective min g({b,n{b)) in propositicn 2.8. can be
b>0

standerlized as follows.

min a(b, n(b))

b>0
Tv
b— -[n(b) + 1}
. 1 u Tv
= C min (1 + £ + =+ bs =X}
b>0 (l+b)n(b)+l -1 b T c
.= Tv wu
= C min g(b,n{b),—, &)
b~0 ct T
, and by multiplying Gi's by % resnectively, (2.3.6)
becomes
_ v b=X - [n(b) + 1] .
Sob) =3 & = A (b)Y +1 *' B
(1+b) -1
and
< _ v _ r (1+b)F -1
Gr(b) =3 6r = (1+b) Go(b) —

for r=1,2,...,n(b).

- - m
Note that g and ér(b)'s are determined by ;%, and

E
T

-% -
b, and the optimal b for g is also optimal for g.

*
For the optimal b we have following algorithm.




Algorithm 2.1,

Step 1. Use the bisection method to obtain the unigue

zero of £ ., £ ,,,... 0N (0,=), b ™)
0 0 0
[bn0+2,w),..., resnectively.
If b, >//%; then n=k and go to step 2.
Step 2. If 2% s(bn0+l) > 6, go to step 3; otherwise, let

= Ty s
m=max {k'—E s(bk+l) <6, ny <k < n}, go to step 4.

dg
Steo 3. If db(bn0+l'n0)

- 0 then use the bisection method

n,

to obtain the unique zero bn of
0

jeT Jol
&3

(., no) in

(e, bn +1], where £ is a small nositive number .
0 3

) da - dg .
such that m=(:,n ) ~ 0. If Eﬁ(bn0+l'n0) <0,

let gn= b + 1. Set m=n

then go to step 5.
o "o

0

Step 4. Graph g(b,n(b)) from o to bm+l, let Bm satisfy

g(bm) = min {g(b,n(b))}. Go to stev 5.

0<bs<b |

Step 5. Let k=m,...,n.

dg dg . . .
If HE(bk’k) 3% (bk+l,k) 0 then use the bisection

. . Y d .
method to obtain the unique zero bk of H% (-,k) in
(d,,b. 1. If gg (b k)gé(b k) > 0 and 32 (b, ,k)>0

k' k+l"" k' k+1'N 2 dH kNS

N dq dg ;
then bk = bk' If as(bk,k) HB(bk+1'k) > 0 and
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gg (b, ,k) - 0 then b, = b

K Kil® Ch T¢ step 6,

*
Step 6. The optimal b satisfies

* o . { n, n,
g(b ,(n{b )) = min q(?k,n(bk))l.

k=m,...,n

The finiteness of step 1.

< /C_ , by the definition of b, and

Suppose lim bk K

K e /v

provosition 2.11 we have

—— K
/) Tk /C Tv ¢ e
(l+/ _‘.I.V_ / _UV —c -——-Uv + 1 <0 as k

which is false. Hence, there is a n+l such that b-,, > /-
uv

The optimization of algorithm 2.1, is then followed

by the finiteness of step 1., theorem 2.4, vroposition 2.7

and proposition 2.8,
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